Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Aging Neurosci ; 15: 1293479, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38192281

RESUMO

Objective: Multisensory integration enhances sensory processing in older adults. This study aimed to investigate how the sensory enhancement would modulate the motor related process in healthy older adults. Method: Thirty-one older adults (12 males, mean age 67.7 years) and 29 younger adults as controls (16 males, mean age 24.9 years) participated in this study. Participants were asked to discriminate spatial information embedded in the unisensory (visual or audial) and multisensory (audiovisual) conditions. The responses made by the movements of the left and right wrists corresponding to the spatial information were registered with specially designed pads. The electroencephalogram (EEG) marker was the event-related super-additive P2 in the frontal-central region, the stimulus-locked lateralized readiness potentials (s-LRP) and response-locked lateralized readiness potentials (r-LRP). Results: Older participants showed significantly faster and more accurate responses than controls in the multisensory condition than in the unisensory conditions. Both groups had significantly less negative-going s-LRP amplitudes elicited at the central sites in the between-condition contrasts. However, only the older group showed significantly less negative-going, centrally distributed r-LRP amplitudes. More importantly, only the r-LRP amplitude in the audiovisual condition significantly predicted behavioral performance. Conclusion: Audiovisual integration enhances reaction time, which associates with modulated motor related processes among the older participants. The super-additive effects modulate both the motor preparation and generation processes. Interestingly, only the modulated motor generation process contributes to faster reaction time. As such effects were observed in older but not younger participants, multisensory integration likely augments motor functions in those with age-related neurodegeneration.

2.
Cereb Cortex ; 32(7): 1390-1404, 2022 03 30.
Artigo em Inglês | MEDLINE | ID: mdl-34470053

RESUMO

Our knowledge about neural mechanisms underlying decision making is largely based on experiments that involved few options. However, it is more common in daily life to choose between many options, in which processing choice information selectively is particularly important. The current study examined whether the dorsolateral prefrontal cortex (dlPFC) and posterior parietal cortex (PPC) are of particular importance to multiple-option decision making. Sixty-eight participants received anodal high definition-transcranial direct current stimulation (HD-tDCS) to focally enhance dlPFC or PPC in a double-blind sham-controlled design. Participants then performed a multiple-option decision making task. We found longer fixations on poorer options were related to less optimal decisions. Interestingly, this negative impact was attenuated after applying anodal HD-tDCS over dlPFC, especially in choices with many options. This suggests that dlPFC has a causal role in filtering choice-irrelevant information. In contrast, these effects were absent after participants received anodal HD-tDCS over PPC. Instead, the choices made by these participants were more biased towards the best options presented on the side contralateral to the stimulation. This suggests PPC has a causal role in value-based spatial selection. To conclude, the dlPFC has a role in filtering undesirable options, whereas the PPC emphasizes the desirable contralateral options.


Assuntos
Estimulação Transcraniana por Corrente Contínua , Tomada de Decisões/fisiologia , Córtex Pré-Frontal Dorsolateral , Humanos , Lobo Parietal , Córtex Pré-Frontal/fisiologia
3.
Eur J Neurosci ; 53(11): 3672-3687, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33880818

RESUMO

The uniqueness of neural processes between allocentric and egocentric spatial coding has been controversial. The distinctive paradigms used in previous studies for manipulating spatial coding could have attributed for the inconsistent results. This study was aimed to generate converging evidence from previous functional brain imaging experiments for collating neural substrates associated with these two types of spatial coding. An additional aim was to test whether test-taking processes would have influenced the results. We obtained coordinate-based functional neuroimaging data for 447 subjects and performed activation likelihood estimation (ALE) meta-analysis. Among the 28 experiments, the results indicate two common clusters of convergence. They were the right precuneus and the right superior frontal gyrus as parts of the parieto-frontal circuit. Between-type differences were in the parieto-occipital circuit, with allocentric showing convergence in the superior occipital gyrus (SOG) cluster compared with egocentric showing convergence in the middle occipital gyrus (MOG) cluster. Task-specific influences were only found in allocentric spatial coding. Spatial judgment-oriented tasks seem to increase the demands on manipulating spatial relationships among the visual objects, while spatial navigation tasks seem to increase the demands on maintaining object representations. Our findings address the theoretical controversies on spatial coding that both the allocentric and egocentric types are common in their processes mediated by the parieto-frontal network, while unique and additional processes in the allocentric type are mediated by the parieto-occipital network. The positive results on possible task-specific confound offer insights into the future design of spatial tasks for eliciting spatial coding processes.


Assuntos
Percepção Espacial , Navegação Espacial , Humanos , Julgamento , Orientação Espacial , Lobo Parietal
4.
Brain Topogr ; 34(2): 207-220, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33484379

RESUMO

Allocentric and egocentric are two types of spatial coding. Previous studies reported the dorsal attention network's involvement in both types. To eliminate possible paradigm-specific confounds in the results, this study employed fine-grained cue-to-target paradigm to dissociate allocentric (aSC) and egocentric (eSC) spatial coding. Twenty-two participants completed a custom visuospatial task, and changes in the concentration of oxygenated hemoglobin (O2-Hb) were recorded using functional near-infrared spectroscopy (fNIRS). The least absolute shrinkage and selection operator-regularized principal component (LASSO-RPC) algorithm was used to identify cortical sites that predicted the aSC and eSC conditions' reaction times. Significant changes in O2-Hb concentration in the right inferior parietal lobule (IPL) and post-central gyrus regions were common in both aSC and eSC. Results of inter-channel correlations further substantiate cortical activities in both conditions were predominantly over the right parieto-frontal areas. Together with right superior frontal gyrus areas be the reaction time neural correlates, the results suggest top-down attention and response-mapping processes are common to both spatial coding types. Changes unique to aSC were in clusters over the right intraparietal sulcus, right temporo-parietal junction, and left IPL. With the left pre-central gyrus region, be the reaction time neural correlate, aSC is likely to involve more orienting attention, updating of spatial information, and object-based response selection and inhibition than eSC. Future studies will use other visuospatial task designs for testing the robustness of the findings on spatial coding processes.


Assuntos
Acoplamento Neurovascular , Mapeamento Encefálico , Humanos , Imageamento por Ressonância Magnética , Lobo Parietal , Percepção Espacial , Espectroscopia de Luz Próxima ao Infravermelho
5.
IEEE Trans Neural Syst Rehabil Eng ; 27(6): 1341-1349, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-31056502

RESUMO

Most people acquire motor skills through feedback-based training. How the human brain processes sensory feedbacks during training, especially in a gait training, remain largely unclear. The purpose of this paper is to explore how humans adopt a new gait pattern to reduce impacts during walking-with the aid of visual and audio feedbacks. This paper demonstrates the features of underlying brain activity in incorporating the visual or auditory cues to acquire a new gait pattern. Electroencephalography (EEG) and peak positive acceleration (PPA) of the heel were collected from 23 participants during walking on a treadmill with no feedback, with visual feedback, or with audio feedback. The feedbacks were presented after each foot strike, where a sub-threshold PPA triggered a positive feedback (green/low-pitched), and a suprathreshold PPA triggered a negative feedback (red/high-pitched). The participants were instructed to voluntarily control their gait, so that low PPA could be achieved. This control was perturbed in some sessions by an additional cognitive task, and the influence of such distraction was also explored. The PPA was significantly lower in the sessions with visual or audio feedback than in sessions without feedback, showing an immediate improvement in gait pattern, when the feedback was provided. Different feedbacks modulated neural activities at different locations and/or levels during training. Alpha event-related synchronization (ERS) was particularly increased during the encoding of auditory feedback or the introduction of a distracting task. In the meantime, prominent frontal and posterior theta ERS were coupled with negative feedback, and strong beta event-related desynchronization (ERD) was observed only in sessions with feedbacks. Our results indicate that feedback effectively enhances motor planning when acquiring a new gait.


Assuntos
Estimulação Acústica , Retroalimentação Psicológica , Retroalimentação Sensorial , Transtornos Neurológicos da Marcha/fisiopatologia , Transtornos Neurológicos da Marcha/reabilitação , Aceleração , Adulto , Ritmo alfa , Ritmo beta , Fenômenos Biomecânicos , Cognição , Eletroencefalografia , Sincronização de Fases em Eletroencefalografia , Feminino , Voluntários Saudáveis , Humanos , Masculino , Desempenho Psicomotor , Ritmo Teta , Caminhada , Adulto Jovem
6.
Front Hum Neurosci ; 12: 416, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30386223

RESUMO

Background: Transcranial direct-current stimulation (tDCS) facilitates cognitive improvement in healthy and pathological populations. It has been increasingly used in cases of mild cognitive impairment (MCI) and dementia. Our research question is: Can tDCS serve as a clinical intervention for improving the cognitive functions of persons with MCI (PwMCI) and dementia (PwD)? Objective: This systematic review evaluated the evidence to determine the efficacy of tDCS in improving cognitive outcomes in PwD and PwMCI. Methods: A systematic review was conducted of studies published up to November 2017 involving tDCS in cases of MCI and dementia. Studies were ranked according to the level of evidence (Oxford Center for Evidence-Based Medicine) and assessed for methodological quality (Risk of Bias Tool in the Cochrane Handbook for Systematic Reviews of Interventions). Data was extracted on all protocol variables to establish a reference framework for clinical interventions. Different modalities, tDCS alone or combined with cognitive training, compared with sham tDCS were examined in both short and long-term effects. Four randomized control trials (RCTs) with memory outcomes were pooled using the fixed-effect model for the meta-analysis. Results: Twelve studies with 195 PwD and four with 53 PwMCI met the inclusion criteria. Eleven articles were ranked as Level 1b. The results on the meta-analysis on pooled effects of memory indicated a statistically significant medium effect size of 0.39 (p = 0.04) for immediate effects. This improvement was not maintained in the long term 0.15 (p = 0.44). Conclusion: tDCS improves memory in PwD in the short term, it also seems to have a mild positive effect on memory and language in PwMCI. However, there is no conclusive advantage in coupling tDCS with cognitive training. More rigorous evidence is needed to establish whether tDCS can serve as an evidence-based intervention for both populations.

7.
Front Aging Neurosci ; 9: 374, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29184494

RESUMO

Multisensory integration is an essential process that people employ daily, from conversing in social gatherings to navigating the nearby environment. The aim of this study was to investigate the impact of aging on modulating multisensory integrative processes using event-related potential (ERP), and the validity of the study was improved by including "noise" in the contrast conditions. Older and younger participants were involved in perceiving visual and/or auditory stimuli that contained spatial information. The participants responded by indicating the spatial direction (far vs. near and left vs. right) conveyed in the stimuli using different wrist movements. electroencephalograms (EEGs) were captured in each task trial, along with the accuracy and reaction time of the participants' motor responses. Older participants showed a greater extent of behavioral improvements in the multisensory (as opposed to unisensory) condition compared to their younger counterparts. Older participants were found to have fronto-centrally distributed super-additive P2, which was not the case for the younger participants. The P2 amplitude difference between the multisensory condition and the sum of the unisensory conditions was found to correlate significantly with performance on spatial discrimination. The results indicated that the age-related effect modulated the integrative process in the perceptual and feedback stages, particularly the evaluation of auditory stimuli. Audiovisual (AV) integration may also serve a functional role during spatial-discrimination processes to compensate for the compromised attention function caused by aging.

8.
Brain Topogr ; 30(3): 364-379, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-28161728

RESUMO

Cross-modal learning requires the use of information from different sensory modalities. This study investigated how the prior visual experience of late blind individuals could modulate neural processes associated with learning of sound localization. Learning was realized by standardized training on sound localization processing, and experience was investigated by comparing brain activations elicited from a sound localization task in individuals with (late blind, LB) and without (early blind, EB) prior visual experience. After the training, EB showed decreased activation in the precuneus, which was functionally connected to a limbic-multisensory network. In contrast, LB showed the increased activation of the precuneus. A subgroup of LB participants who demonstrated higher visuospatial working memory capabilities (LB-HVM) exhibited an enhanced precuneus-lingual gyrus network. This differential connectivity suggests that visuospatial working memory due to the prior visual experience gained via LB-HVM enhanced learning of sound localization. Active visuospatial navigation processes could have occurred in LB-HVM compared to the retrieval of previously bound information from long-term memory for EB. The precuneus appears to play a crucial role in learning of sound localization, disregarding prior visual experience. Prior visual experience, however, could enhance cross-modal learning by extending binding to the integration of unprocessed information, mediated by the cognitive functions that these experiences develop.


Assuntos
Cegueira , Aprendizagem/fisiologia , Sistema Límbico/fisiologia , Lobo Occipital/fisiologia , Lobo Parietal/fisiologia , Localização de Som/fisiologia , Adulto , Idade de Início , Aprendizagem por Associação , Cognição , Feminino , Humanos , Masculino , Memória de Curto Prazo/fisiologia , Pessoa de Meia-Idade , Adulto Jovem
9.
Medicine (Baltimore) ; 95(1): e2455, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26735552

RESUMO

Postexercise cold water immersion has been advocated to athletes as a means of accelerating recovery and improving performance. Given the effects of cold water immersion on blood flow, evaluating in vivo changes in tissue oxygenation during cold water immersion may help further our understanding of this recovery modality. This study aimed to investigate the effects of cold water immersion on muscle oxygenation and performance during repeated bouts of fatiguing exercise in a group of healthy young adults. Twenty healthy subjects performed 2 fatiguing bouts of maximal dynamic knee extension and flexion contractions both concentrically on an isokinetic dynamometer with a 10-min recovery period in between. Subjects were randomly assigned to either a cold water immersion (treatment) or passive recovery (control) group. Changes in muscle oxygenation were monitored continuously using near-infrared spectroscopy. Muscle performance was measured with isokinetic dynamometry during each fatiguing bout. Skin temperature, heart rate, blood pressure, and muscle soreness ratings were also assessed. Repeated measures ANOVA analysis was used to evaluate treatment effects. The treatment group had a significantly lower mean heart rate and lower skin temperature compared to the control group (P < 0.05). Cold water immersion attenuated a reduction in tissue oxygenation in the second fatiguing bout by 4% when compared with control. Muscle soreness was rated lower 1 day post-testing (P < 0.05). However, cold water immersion had no significant effect on muscle performance in subsequent exercise. As the results show that cold water immersion attenuated decreased tissue oxygenation in subsequent exercise performance, the metabolic response to exercise after cold water immersion is worthy of further exploration.


Assuntos
Crioterapia/métodos , Exercício Físico/fisiologia , Fadiga/terapia , Força Muscular/fisiologia , Oxigênio/metabolismo , Pressão Sanguínea , Temperatura Baixa , Fadiga/fisiopatologia , Feminino , Frequência Cardíaca , Humanos , Masculino , Dinamômetro de Força Muscular , Músculo Esquelético , Temperatura Cutânea , Espectroscopia de Luz Próxima ao Infravermelho , Água , Adulto Jovem
10.
Artigo em Inglês | MEDLINE | ID: mdl-26124852

RESUMO

This study explored the relationship of mindfulness trait with the early and late stages of affective processing, by examining the two corresponding ERP components, P2 and LPP, collected from twenty-two male Chinese participants with a wide range of meditation experiences. Multiple regression analyses was performed on the mindfulness scores, as measured by CAMS-R, with the subjective affective ratings and ERP data collected during an emotion processing task. The results showed that increased mindfulness scores predicted increased valence ratings of negative stimuli (less negative), as well as increased P2 amplitudes at the frontocentral location for positive compared to negative stimuli. Based on these findings, a plausible mechanism of mindfulness in reducing negativity bias was discussed. Moreover, our results replicated previous findings on the age-related increase of P2 amplitudes at the frontal sites for positive compared to neutral stimuli. Since the locations at which P2 amplitudes were found as associated with age and mindfulness differed, as did the emotional contents of the stimuli being compared, indicating that the effect of age did not confound our findings on mindfulness and the two factors might operate on early affective processing from distinct sources and mechanisms.

11.
Brain Topogr ; 28(3): 506-19, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-24322827

RESUMO

Comparing early- and late-onset blindness in individuals offers a unique model for studying the influence of visual experience on neural processing. This study investigated how prior visual experience would modulate auditory spatial processing among blind individuals. BOLD responses of early- and late-onset blind participants were captured while performing a sound localization task. The task required participants to listen to novel "Bat-ears" sounds, analyze the spatial information embedded in the sounds, and specify out of 15 locations where the sound would have been emitted. In addition to sound localization, participants were assessed on visuospatial working memory and general intellectual abilities. The results revealed common increases in BOLD responses in the middle occipital gyrus, superior frontal gyrus, precuneus, and precentral gyrus during sound localization for both groups. Between-group dissociations, however, were found in the right middle occipital gyrus and left superior frontal gyrus. The BOLD responses in the left superior frontal gyrus were significantly correlated with accuracy on sound localization and visuospatial working memory abilities among the late-onset blind participants. In contrast, the accuracy on sound localization only correlated with BOLD responses in the right middle occipital gyrus among the early-onset counterpart. The findings support the notion that early-onset blind individuals rely more on the occipital areas as a result of cross-modal plasticity for auditory spatial processing, while late-onset blind individuals rely more on the prefrontal areas which subserve visuospatial working memory.


Assuntos
Percepção Auditiva/fisiologia , Cegueira/fisiopatologia , Encéfalo/fisiopatologia , Processamento Espacial/fisiologia , Percepção Visual/fisiologia , Estimulação Acústica/métodos , Adulto , Mapeamento Encefálico , Circulação Cerebrovascular/fisiologia , Feminino , Humanos , Imageamento por Ressonância Magnética , Masculino , Pessoa de Meia-Idade , Testes Neuropsicológicos , Oxigênio/sangue , Adulto Jovem
12.
Brain Res ; 1486: 82-91, 2012 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-23063888

RESUMO

This study aimed to differentiate perceptual and semantic encoding processes using subsequent memory effects (SMEs) elicited by the recognition of orthographs of single Chinese characters. Participants studied a series of Chinese characters perceptually (by inspecting orthographic components) or semantically (by determining the object making sounds), and then made studied or unstudied judgments during the recognition phase. Recognition performance in terms of d-prime measure in the semantic condition was higher, though not significant, than that of the perceptual condition. The between perceptual-semantic condition differences in SMEs at P550 and late positive component latencies (700-1000ms) were not significant in the frontal area. An additional analysis identified larger SME in the semantic condition during 600-1000ms in the frontal pole regions. These results indicate that coordination and incorporation of orthographic information into mental representation is essential to both task conditions. The differentiation was also revealed in earlier SMEs (perceptual>semantic) at N3 (240-360ms) latency, which is a novel finding. The left-distributed N3 was interpreted as more efficient processing of meaning with semantically learned characters. Frontal pole SMEs indicated strategic processing by executive functions, which would further enhance memory.


Assuntos
Memória/fisiologia , Reconhecimento Visual de Modelos/fisiologia , Estimulação Luminosa/métodos , Desempenho Psicomotor/fisiologia , Semântica , Adulto , Feminino , Humanos , Masculino , Percepção Visual/fisiologia , Adulto Jovem
13.
PLoS One ; 7(6): e40215, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22768257

RESUMO

INTRODUCTION: Research has shown that people with chronic pain have difficulty directing their attention away from pain. A mental strategy that incorporates focused attention and distraction has been found to modulate the perception of pain intensity. That strategy involves placing attention on the nociceptive stimulus felt and shifting attention to a self-generated sub-nociceptive image and rehearsing it. Event-related potential was used to study the possible processes associated with the focus-then-orient strategy. METHODS: Eighteen pain-free participants received different levels of 50-ms nociceptive stimulations elicited by electric shocks at the right lateral malleolus (ankle). In perception trials, participants maintained the perceived nociceptive stimulus in working memory for 3,000 ms. In imagery trials, participants mentally generated and maintained the corresponding sub-nociceptive image they had learned previously. After both types of trials, participants evaluated the pain intensity of the incoming stimulus by recalling the feeling of the nociceptive stimulation at the beginning of the trial. RESULTS: Shifting attention from the incoming nociceptive to a self-generated sub-nociceptive image elicited central P2 and centro-parietal P3 waves, which were found to correlate with proportional scores on the Stroop Test. They were followed by a frontal N400 and a parietal P600, denoting generation of sub-nociceptive images in working memory. The voltages elicited in these potentials correlated moderately with attenuation of the pain ratings of the recalled nociceptive stimulations. CONCLUSIONS: Focus-and-orient attention across nociceptive and sub-nociceptive images appears to be related to response inhibition. Mental rehearsal of the sub-nociceptive images was found to modulate the perception of the nociceptive sensation felt prior to the imagery. Such modulation seems to be mediated by generating and maintaining sub-nociceptive images in working memory. Future studies should explore the mental processes associated with orienting attention for pain modulation among people with pathological pain and frontal lobe dysfunction.


Assuntos
Atenção/fisiologia , Potenciais Evocados/fisiologia , Percepção da Dor/fisiologia , Adulto , Comportamento , Feminino , Humanos , Imagens, Psicoterapia , Masculino , Nociceptividade/fisiologia , Orientação/fisiologia , Teste de Stroop , Análise e Desempenho de Tarefas
14.
Hum Brain Mapp ; 33(11): 2714-27, 2012 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-21932260

RESUMO

Cross-modal processing enables the utilization of information received via different sensory organs to facilitate more complicated human actions. We used functional MRI on early-blind individuals to study the neural processes associated with cross auditory-spatial learning. The auditory signals, converted from echoes of ultrasonic signals emitted from a navigation device, were novel to the participants. The subjects were trained repeatedly for 4 weeks in associating the auditory signals with different distances. Subjects' blood-oxygenation-level-dependent responses were captured at baseline and after training using a sound-to-distance judgment task. Whole-brain analyses indicated that the task used in the study involved auditory discrimination as well as spatial localization. The learning process was shown to be mediated by the inferior parietal cortex and the hippocampus, suggesting the integration and binding of auditory features to distances. The right cuneus was found to possibly serve a general rather than a specific role, forming an occipital-enhanced network for cross auditory-spatial learning. This functional network is likely to be unique to those with early blindness, since the normal-vision counterparts shared activities only in the parietal cortex.


Assuntos
Cegueira , Mapeamento Encefálico , Encéfalo/fisiologia , Aprendizagem/fisiologia , Localização de Som/fisiologia , Percepção Espacial/fisiologia , Estimulação Acústica , Adulto , Feminino , Humanos , Interpretação de Imagem Assistida por Computador , Imageamento por Ressonância Magnética , Masculino , Pessoa de Meia-Idade , Pessoas com Deficiência Visual , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...